Improved haplotyping of rare variants using next-generation sequence data

نویسندگان

  • Fouad Zakharia
  • Carlos Bustamante
چکیده

Accurate identification of haplotypes in sequenced human genomes can provide invaluable information about population demography and fine-scale correlations along the genome, thus empowering both population genomic and medical association studies. Yet phasing unrelated individuals remains a challenging problem. Incorporating available data from high throughput sequencing into traditional statistical phasing approaches is a promising avenue to alleviate these issues. We present a novel statistical method that expands on an existing graphical haplotype reconstruction method (shapeIT) to incorporate phasing information from paired-end read data. The algorithm harnesses the haplotype graph information estimated by shapeIT from genotypes across the population and refines haplotype likelihoods for a given individual to be compatible with the sequencing data. Applying the method to HapMap individuals genotyped on the Affymetrix Axiom chip at 7,745,081 SNPs and on a trio sequenced by Complete Genomics, we found that the inclusion of paired end read data significantly improved phasing, with reductions in switch error on the order of 4-15% against shapeIT across all panels. As expected, the improvements were found to be most significant at sites harboring rare variants; furthermore, we found that longer read sizes and higher throughput translated to greater decreases in switching error, as did higher variance in the size of the insert separating the two reads—suggesting that multi-platform next generation sequencing may be exploited to yield particularly accurate haplotypes. Overall, the phasing improvements afforded by this new method highlight the power of integrating sequencing read information and population genotype data for reconstructing haplotypes in unrelated individuals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting associations of rare variants with common diseases: collapsing or haplotyping?

In recent years, a myriad of new statistical methods have been proposed for detecting associations of rare single-nucleotide variants (SNVs) with common diseases. These methods can be generally classified as 'collapsing' or 'haplotyping' based. The former is the predominant class, composed of most of the rare variant association methods proposed to date. However, recent works have suggested tha...

متن کامل

O-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis

Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...

متن کامل

Imputation-based Assessment of Next Generation Rare Exome Variant Arrays

A striking finding from recent large-scale sequencing efforts is that the vast majority of variants in the human genome are rare and found within single populations or lineages. These observations hold important implications for the design of the next round of disease variant discovery efforts-if genetic variants that influence disease risk follow the same trend, then we expect to see populatio...

متن کامل

I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...

متن کامل

Combining effects from rare and common genetic variants in an exome-wide association study of sequence data

Recent breakthroughs in next-generation sequencing technologies allow cost-effective methods for measuring a growing list of cellular properties, including DNA sequence and structural variation. Next-generation sequencing has the potential to revolutionize complex trait genetics by directly measuring common and rare genetic variants within a genome-wide context. Because for a given gene both ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012